
Interacting with Our Game
In this chapter, we will discuss the ways in which we can get input from the player.
As there are many different ways to handle user input, we will see the advantages
and disadvantages of each of them. Some of the ways to interact with the game are
as follows:

• Touching the screen (taps)
• Gesture recognizers
• Accelerometer and gyroscope
• Game controller events

Handling touches
When the user touches the iOS device screen, our current running scene will receive
a call to one of the following methods:

• -(void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event

• -(void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event

• -(void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event

• -(void) touchesCancelled:(NSSet *)touches withEvent:(UIEvent *)
event

www.it-ebooks.info

http://www.it-ebooks.info/

Interacting with Our Game

[34]

Each method gets an NSSet class of a UITouch object (which holds the coordinates
of our touch), and the event holds information about the window and view in which
the touch was triggered as well as information about the touch. Let's see what each
of them does:

• touchesBegan:: This method gets triggered each time the user touches the
screen, unrelated to whether this touch continues as a long press or not.

• touchesMoved:: This method provides you with events that occurred if the
user moved a finger while on screen, and provides new touches.

• touchesEnded:: This method gets called when the user takes their finger off
the screen. This can be useful, for example, if you want some animation to
play after the user removes their finger, or to re-enable physics calculations
on the node.

• touchesCancelled:: This method is rarely needed, but you should
implement it anyway. It is called when some event cancels the touch,
for example, an on-screen alert, phone call, notifications (such as a push
notification or calendar notification), and others. You will likely want to
trigger the same code as in touchesEnded:.

Sprite Kit offers a few helper methods to assist us with touches and detecting nodes
in which touches happened. We will list some of them here. These are all methods
of SKScene:

• [touch locationInNode:(SKNode*)node: This is an example of one of
the methods to convert location from UIView coordinates to coordinates in
SKNode. This is useful since touch objects in those methods have UIView
coordinates and we operate with Sprite Kit coordinates.

• [self nodeAtPoint:(CGPoint)p]: This method returns the node in the
scene's hierarchy that intersects the provided point. This can be useful to
detect touches on certain nodes without tedious calculations.

Now that we have learned the basics, let's implement the basic functionality of touch
handling. We will move the character sprite by dragging it around. We will need to
perform a few steps to accomplish this, which are as follows:

1. Add @property (assign) BOOL selected; to your player class in
ERGPlayer.h—we will use this to handle the state of the player sprite;
whether we should drag it when the user drags a finger on the screen
or disregard such touches.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[35]

2. Add the following code to the beginning of the touchesBegan: method
in ERGScene:

 UITouch *touch = [touches anyObject];
 SKSpriteNode *touchedNode = (SKSpriteNode *)[self
nodeAtPoint:[touch locationInNode:self]];

 if (touchedNode.name == playerName) {
 ERGPlayer *player = (ERGPlayer *) touchedNode;
 player.selected = YES;
 return;
 }

On the first line, we get the touch object from the touches set and then try to
find if it intersects any node. To do that, we call the nodeAtPoint: method and
provide the location of the touch by converting touch to the Sprite Kit coordinates
in the locationInNode: method. We want to ignore taps on the background itself,
so this is why we check to make sure the player was tapped.

If we tap the player, we set selected to YES so that the touchesMoved: method
knows that we are dragging the character sprite. After that, we call return to exit
the method, as after this return statement, we have other code that we don't want
to trigger.

The next thing that we need to handle is the touchesMoved: method. We haven't
used that before, so type it as follows:

-(void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event
{
 UITouch *touch = [touches anyObject];

 ERGPlayer *player = (ERGPlayer *)[self
childNodeWithName:playerName];
 if (player.selected) {

 player.position = [touch locationInNode:self];
 }
}

This method (touchesMoved:) checks if the player is actually selected, and if it
is, the coordinates are changed to the touch location. We only want to drag the
character sprite if touches began on it.

www.it-ebooks.info

http://www.it-ebooks.info/

Interacting with Our Game

[36]

And the thing that we need to do last is remove the selected property after the touch
has ended:

- (void) touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event
{
 ERGPlayer *player = (ERGPlayer *)[self
childNodeWithName:playerName];
 if (player.selected) {
 player.selected = NO;
 }
}

Now, if you build and run the project, you will be able to drag the character sprite
around. Another option to consider is to move the score label around the screen to
the position that you would like.

You might have noticed that we are checking the view hierarchy each time we want
to grab a pointer to the player. This is not the optimal way to do it. Another option
to consider is using a player as a property of the scene. This looks like a fast and
easy way to do it, but consider that you might have a few objects on screen, or even
dozens of them that need interaction. Having 20 properties for this reason does not
seem feasible.

You should also know that traversing a node tree is not a very fast or efficient
operation. Imagine that you have 1,000 nodes. If you need to find a node by name
and it is not there, the code will traverse each of these nodes as it needs to make
sure that there is none with your name.

This traversal might happen a few times during just one frame calculation, and since
this happens many times per second, you might get a very real slowdown from this.
You might want to cache certain nodes in weak pointers in case you need them later.
Usually, you might want to avoid many node tree traversals.

Using gesture recognizers
Gesture recognizers allow us to not bother with the low-level code that was
explained earlier in this chapter. Without gesture recognizers, certain things
might be extremely hard to implement, such as pinching in and out or rotating.
Thankfully, Apple has handled all of this for us.

We might want to increase and decrease the speed of scrolling for testing reasons,
so we will implement this feature.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[37]

The first thing that comes to mind is adding a gesture recognizer to our scene,
pointing it to some method, and be done with it. But unfortunately, this won't
work—SKNodes and SKScenes do not support adding gesture recognizers.
But there is a way to make this work.

SKScene has a handy method, — (void)didMoveToView:(SKView *)view,
which we can use, and it gets called each time a scene is about to be attached
to some view. When we run our game, this happens right after the scene creation,
and thus it is a useful place to set up our gesture recognizers. The following is
the code for this method:

- (void)didMoveToView:(SKView *)view
{
 UISwipeGestureRecognizer *swiper = [[UISwipeGestureRecognizer
alloc] initWithTarget:self action:@selector(handleSwipeRight:)];
 swiper.direction = UISwipeGestureRecognizerDirectionRight;
 [view addGestureRecognizer:swiper];

 UISwipeGestureRecognizer *swiperTwo = [[UISwipeGestureRecognizer
alloc] initWithTarget:self action:@selector(handleSwipeLeft:)];
 swiperTwo.direction = UISwipeGestureRecognizerDirectionLeft;
 [view addGestureRecognizer:swiperTwo];
}

We create two gesture recognizers, set the methods to be called, and specifically to
UISwipeGestureRecognizer, set the swipe direction. Thus, if we swipe to the right,
one method is called, and if we swipe to the left, another one is triggered. These
methods are fairly straightforward, as they only increase or decrease speed:

- (void) handleSwipeRight:(UIGestureRecognizer *)recognizer
{
 if (recognizer.state == UIGestureRecognizerStateRecognized) {
 backgroundMoveSpeed += 50;
 }
}

- (void) handleSwipeLeft:(UIGestureRecognizer *)recognizer
{
 if (recognizer.state == UIGestureRecognizerStateRecognized &&
backgroundMoveSpeed > 50) {
 backgroundMoveSpeed -= 50;
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Interacting with Our Game

[38]

The interesting part here is a second check for background speed in the
handleSwipeLeft: method. We don't want to go into negative or zero speed,
since our background generator works only with positive scrolling (from right
to left), and if we have negative scrolling, the background will end.

Another thing that we need to remember is to remove the gesture recognizer once
the scene gets removed from the view, as we might get another scene in the same
view that doesn't know how to handle these methods. Thus, your application will
crash at this point. To prevent this, add this method:

-(void)willMoveFromView:(SKView *)view
{
 for (UIGestureRecognizer *recognizer in view.gestureRecognizers) {
 [view removeGestureRecognizer:recognizer];
 }
}

This gets called when our scene is about to be removed from the view. It iterates
over the gesture recognizers in the view, removing each of them.

Accelerometer
Accelerometers and gyroscopes in modern devices are probably the things that
have contributed to much of the popularity of iOS devices. Many people still play
Doodle Jump, a game where you control a character that jumps on platforms,
and is controlled by tilting your device.

Accelerometer controls have many advantages, which are as follows:

• You don't clutter the screen with game controls
• You don't need to cover the (already small) screen space with fingers while

playing your game
• The accelerometer controls can imitate real-life interactions—such as a car

steering wheel
• With new hardware (gyroscope) available on the latest devices (starting with

iPhone 4), you get precise data about the device's position, which leads to
smooth controls

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[39]

Some games benefit greatly from accelerometer support, and we are going to
implement this in our game.

Accelerometer data is available only on devices. Thus, if you test it on the
simulator, this code won't do anything, as the accelerometer will return
0 all the time. Consider getting an Apple developer license if you have
not got one already, as it offers the option of testing on a real device.
You can get it at https://developer.apple.com/programs/ios/.
It is especially useful for developing games, as the frame rate in Sprite
Kit in the simulator is far from the one that you get on real devices.
The simulator uses a much faster CPU and much faster memory, but the
emulated rendering pipeline is much slower, and you can get very low
fps in most trivial situations. Don't trust the frame rate in the simulator!

The accelerometer is handled by the Core Motion library, so you will need to
include that in your project. To do that, simply add @import CoreMotion;,
where all imports are at the top of the ERGMyScene.h file.

@import is the new way to import frameworks into your code, and it was
introduced with iOS 7 and Xcode 5. Earlier, you had to add a framework
to your project and use #import everywhere you needed it. Now you
can use @import and forget about adding a framework in the project's
settings. The only drawback to this is that you can only use the Apple
frameworks this way. Let's hope it will change to all libraries some day.

The next thing that you need to do is add the Core Motion manager as a property
to your scene.

To do that, add the following line to ERGMyScene.h:

@property (strong, nonatomic) CMMotionManager *manager;

The manager handles all accelerometer data, and we need it to use the
accelerometer's input. In order to start getting accelerometer data, we need
to call a few more methods.

In the initWithSize: method of ERGMyScene.m, add the following lines:

self.manager = [[CMMotionManager alloc] init];
self.manager.accelerometerUpdateInterval = 0.1;
[self.manager startAccelerometerUpdates];

www.it-ebooks.info

http://www.it-ebooks.info/

Interacting with Our Game

[40]

In the first line, we instantiate the manager, and in the second one, we set the update
interval—how often the values in the motion manager will be updated. On the third
line, we tell the manager to start updating, as it won't do anything before that.

Using the accelerometer increases the power use of the device.
Heavy use will drain the battery faster, thus making your
game unlikely to be played further. Only use the accelerometer
when you actually need to, and stop polling it if something
stops the application or if you don't need to parse the
accelerometer data at this time. You can use [self.manager
stopAccelerometerUpdates]; to stop the accelerometer.

Accelerometer data can be read from manager.accelerometerData, and it consists
of three fields—X, Y, and Z axis angle. Each of them represents a value from -1 to 1.

Y axis

Z axis

X axis

Accelerometer data axes

As you can see in the previous diagram, there are three axes, and rotating the device
around each of them changes only that axis' values. You can see this if you add the
following line to the update: method of ERGScene:

NSLog(@"%@", self.manager.accelerometerData);

In order to see what is going on, run the application and start rotating the device
along a different axis, and you will see the value of that go from -1 to 1. We will
use the accelerometer data to move the character sprite. Remember that the
accelerometer does not work on the simulator.

How can we do that? We may read the accelerometer data and set the sprite position
to certain values based on that. But how do we set these positions? We need some
baseline value so that our character stands on the ground.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[41]

As you rotate the device, you can see that values change very fast, and different
device positions yield different results. For every person, that baseline will be
different, and we need to acknowledge that. To compensate that baseline, we will
read the starting value on the launch of an application and base our movement on it.

For our landscape mode game, reading the X axis' coordinates will be most useful.
To get it, we poll self.manager.accelerometerData.acceleration.x.

In order to get the data that we need, we have to save that baseline value.
This is where it gets interesting. Accelerometer data is not available straight
away when you ask it to start updating. It takes some time to poll hardware.
First, add @property (assign) float baseline; to ERGMyScene.h—we
will store the offset for accelerometer data here.

In the init method, right after the startAccelerometerUpdates method, add the
performSelector call to execute the method that sets the baseline:

[self performSelector:@selector(adjustBaseline) withObject:nil
afterDelay:0.1];

After this, we need to add the adjustBaseline method:

- (void) adjustBaseline
{
 self.baseline = self.manager.accelerometerData.acceleration.x;
}

We will also need some value to be multiplied with the accelerometer data,
and having it as a magic number is never good, so let's add a new line to the
Common.h file:

static NSInteger accelerometerMultiplier = 15;

Add the following code to the bottom of your update method in ERGMyScene.m:

ERGPlayer *player = (ERGPlayer *) [self childNodeWithName:playerName];
 player.position = CGPointMake(player.position.x, player.position.y
- (self.manager.accelerometerData.acceleration.x - self.baseline) *
accelerometerMultiplier);

 if (player.position.y < 68) {
 player.position = CGPointMake(player.position.x, 68);
 }
 if (player.position.y > 252) {
 player.position = CGPointMake(player.position.x, 252);
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Interacting with Our Game

[42]

First, we get the pointer to our player sprite. Then, we calculate the new position by
multiplying the accelerometer data and the out multiplier to get the sprite position
on the Y axis. As we don't want to have our character fly off screen, we add a check;
if it goes below or over a certain point, its vertical position is reset to the minimum
value. Build and run the project to see if everything works.

Physics engine
The next big topic that we will discover is physics in our application. Physics-based
games are very popular on the App Store. Angry Birds, Tiny Wings, and Cut the
Rope are all physics-based. They offer lifelike interactions that are fun and appealing.

Another reason why we might want to have a physics engine is that it offers a lot
of functionality "for free". You no longer need to calculate different complicated
collisions, forces, and all things that may affect your nodes. Most of these things are
handled for you by a physics engine.

Physics simulation basics
If you want your node to participate in physics simulation, you have to add a physics
body to it. There are many available methods to generate physics bodies, and they
are as follows:

• BodyWithCircleOfRadius: This method creates a circular physics body.
It is the fastest physics body, and if you have many objects that need to
be simulated, consider setting their physics body to a circle.

• BodyWithRectangleOfSize: This is the same as the previous one,
but with a rectangle. Usually, passing a frame of a node is sufficient
enough for most games.

• BodyWithPolygonFromPath: This creates a physics body from CGPath.
This is useful if you have a very complex sprite and you want it to be
simulated as real as possible.

• BodyWithEdgeFromPoint:toPoint: This is useful to create edges such
as ground level.

There are more methods available; you can check them in the SKPhysicsBody
class reference.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[43]

In order to simulate physics on many bodies in real time, there are many different
optimizations and simplifications. Let's cover some of them:

• All movements, just like in real life, are handled by impulses and forces.
The impulse is applied instantaneously; for example, if a moving ball
collides with a standing ball, the standing ball gets an impulse in one
moment. Force is a continuous effect that moves the body in some direction.
For example, launching a rocket is slow and steady as force gets applied
that pushes it up. All forces and impulses add to each other; thus, you can
have very complex movements with little hassle.

• All bodies are considered rigid—they can't deform as a result of physics
simulation. Of course, you can write your system over existing physics
simulation to do that for you, but it is not provided out of the box.

Each physics body has many properties, some of which are as follows:

• Mass: This is the mass of the body in kilograms. The more massive the body
is, the harder it is to move by impulses or forces.

• Density: This indicates how much mass the body has in a fixed amount of
volume. The denser the body is, the more mass it has for the same volume.

• Dynamic: This is the property that allows you to apply impulses or forces
to the body. Sometimes it is not needed; for example, ground will always be
static and not dynamic. You might also pick dynamic if you want to move
your body yourself, without the physics engine touching it.

• Restitution: This is the property that determines how "jumpy" or "bouncy"
the body is. The higher this is, the higher the knockback is. This ranges
from 0 to 1, but you can set this higher than 1, and in this case, the body will
accelerate each time after the collision, which may eventually lead to a crash.

• usesPreciseCollisionDetection: This is used to handle very fast moving
objects. There are certain situations in which collision might not get detected,
for example, if in one frame, the body is in front of another body, and in
the next frame it is completely behind it without touching it; in this case,
the collision will never be detected, and you don't want this. This method
is very CPU-intensive, so use it only if absolutely necessary.

• affectedByGravity: This property is set to NO if you don't want some objects
such as balloons to be affected by gravity.

• categoryBitMask: This is the bitmask that identifies the body. You might
choose different bitmasks for different objects.

www.it-ebooks.info

http://www.it-ebooks.info/

Interacting with Our Game

[44]

• collisionBitMask: This is the bitmask that identifies what bodies this body
collides with. You might want some objects to collide with others, and other
objects to pass through others. You will need to set the same bitmasks for
objects that you want to collide.

• contactBitMask: This is the bitmask that identifies the body for handling
collisions manually. You might want to have special effects when things
collide; that's why we have this. When bodies have the same bitmask,
a special method will get called for you to handle such collisions manually.

Implementing the physics engine
We might as well start implementing physics in our engine in order to see what the
physics engine gives us. First, we need to set the physics body to our player sprite.
In order to do that, we need more constants in Common.h:

static NSInteger playerMass = 80;
static NSInteger playerCollisionBitmask = 1;

Next, change your init method in ERGPlayer.m to look as follows:

-(instancetype)init
{
 self = [super initWithImageNamed:@"character.png"];
 {
 self.name = playerName;
 self.zPosition = 10;
 self.physicsBody = [SKPhysicsBody bodyWithRectangleOfSize:CGSi
zeMake(self.size.width, self.size.height)];
 self.physicsBody.dynamic = YES;
 self.physicsBody.mass = playerMass;
 self.physicsBody.collisionBitMask = playerCollisionBitmask;
 self.physicsBody.allowsRotation = NO;
 }
 return self;
}

After creating the sprite and setting the name and z order, we start with the physics
body. We create a physics body with the same size as that of our sprite—it is accurate
enough for our game. We set it as dynamic, as we want to use forces and impulses
on our character. Next up, we set the mass, collision bitmask, and disallow rotation,
as we expect our character sprite to never rotate.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[45]

This looks sufficient for our character sprite. What can we do with backgrounds?

Obviously, we need the player to collide with the top and bottom of the screen.
This is when other methods come in handy. Add this code right before the return
statement in the generateNewBackground method in ERGBackground.m:

 background.physicsBody = [SKPhysicsBody bodyWithEdgeFromPoint:CGPo
intMake(0, 30) toPoint:CGPointMake(background.size.width, 30)];
 background.physicsBody.collisionBitMask = playerCollisionBitmask;

We set the bitmask to be the same as we want the player to collide with the
background. But here comes the problem. Since all physics bodies need to be
convex, we can't create the physics body that accommodates both the top and
bottom collision surfaces. We might think of adding a second collision body
to the same node, but it is not supported.

There is a small hack around this—we will just create a new node, attach it as a child
to the background node, and attach the top collision body to it. Add the following
code after the previous code and right before the return statement:

 SKNode *topCollider = [SKNode node];
 topCollider.position = CGPointMake(0, 0);
 topCollider.physicsBody = [SKPhysicsBody bodyWithEd
geFromPoint:CGPointMake(0, background.size.height - 30)
toPoint:CGPointMake(background.size.width, background.size.height -
30)];
 topCollider.physicsBody.collisionBitMask = 1;
 [background addChild:topCollider];

Here, we create a new physics body with EdgeFromPoint, from the left edge to the
right edge. This way, we effectively have two colliding bodies on one background.

As we now want to have physics-based controls, you may remove all the code that
handles movement. These tapping and actions methods are as follows:

• touchesBegan:

• touchesMoved:

• touchesEnded:

• swipeLeft

• swipeRight

www.it-ebooks.info

http://www.it-ebooks.info/

Interacting with Our Game

[46]

Or, you may just follow us. Change the didMoveToView method to the following:

- (void) didMoveToView:(SKView *)view
{
 UILongPressGestureRecognizer *tapper =
[[UILongPressGestureRecognizer alloc] initWithTarget:self action:@
selector(tappedScreen:)];
 tapper.minimumPressDuration = 0.1;
 [view addGestureRecognizer:tapper];
}

Here, we initialize and use the new gesture recognizer that will set the player's state
to accelerating, meaning that the player is moving up now. To handle this, add a
new property to ERGPlayer.h—@property (assign) BOOL accelerating;.

After this, add the following code to ERGMyScene.m:

- (void) tappedScreen:(UITapGestureRecognizer *)recognizer
{
 ERGPlayer *player = (ERGPlayer *)[self
childNodeWithName:@"player"];
 if (recognizer.state == UIGestureRecognizerStateBegan) {
 player.accelerating = YES;
 }

 if (recognizer.state == UIGestureRecognizerStateEnded) {
 player.accelerating = NO;
 }
}

As said before, we need this method to set an accelerated property on the
player—if it is active, we will apply a certain force on each frame of the player.
To do this, add the following to your update method:

 [self enumerateChildNodesWithName:@"player" usingBlock:^(SKNode
*node, BOOL *stop) {
 ERGPlayer *player = (ERGPlayer *)node;
 if (player.accelerating) {
 [player.physicsBody applyForce:CGVectorMake(0,
playerJumpForce * timeSinceLast)];
 }
 }];

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[47]

This code uses the playerJumpForce variable, which sets it in Common.h, as well as
the gravity vector:

static NSInteger playerJumpForce = 8000000;
static NSInteger globalGravity = -4.8;

We set gravity to custom as the real world's gravity is too high, and this strips away
the fun and precise controls of our game.

To affect gravity, add the following statement in ERGMyScene.m in the
initWithSize: method:

self.physicsWorld.gravity = CGVectorMake(0, globalGravity);

In order to make everything work, we need to comment out or delete the old
methods that are in the way. Comment out or delete the following methods:
touchesBegan, touchesMoved, touchesEnded, and touchesCancelled. If you
still have other gesture recognizers such as the long press gesture recognizer in
the didMoveToView: method, remove them too.

After these changes, we have a really precise and fun way to control our character.
We can control the jump of the player sprite just by tapping on the screen for a
certain amount of time. This mechanism is used in many endless runners, and is both
fun and addictive. You have to not only react fast but also predict what can happen,
since applying force to the character does not change your position instantaneously
as your movement carries some momentum, so you have to plan accordingly.

Summary
In this chapter, we have learned how to use the touch controls and gesture
recognizers to control characters on the screen. We have found out how to
move sprites with touch and learned the basics of the physics engine in Sprite
Kit. Integrating the physics engine in your game is a great way to handle collision
detection and add many interesting behaviors without bloating your code.

In the next chapter, we will learn about animations, how to implement them,
and related details, such as textures and texture atlases.

www.it-ebooks.info

http://www.it-ebooks.info/

